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We study the dynamics of a discrete-time tritrophic model which mimics the observed periodicity

in the population cycles of the larch budmoth insect which causes widespread defoliation of larch

forests at high altitudes periodically. Our model employs q-deformation of numbers to model the

system comprising the budmoth, one or more parasitoid species, and larch trees. Incorporating

climate parameters, we introduce additional parasitoid species and show that their introduction

increases the periodicity of the budmoth cycles as observed experimentally. The presence of these

additional species also produces other interesting dynamical effects such as periodic bursting and

oscillation quenching via oscillation death, amplitude death, and partial oscillation death which are

also seen in nature. We suggest that introducing additional parasitoid species provides an alterna-

tive explanation for the collapse of the nine year budmoth outbreak cycles observed in the Swiss

Alps after 1981. A detailed exploration of the parameter space of the system is performed with

movies of bifurcation diagrams which enable variation of two parameters at a time. Limit cycles

emerge through a Neimark–Sacker bifurcation with respect to all parameters in all the five and

higher dimensional models we have studied. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4962633]

Large scale, massive defoliation of larch forests at high

altitudes due to infestation by the larch budmoth (LBM)

insect has been occurring periodically for centuries in

different parts of the world. This ecological phenomenon

involves three trophic levels: the larch trees represented

by their needle length, the budmoth larvae feeding upon

the larch foliage, and a parasitoid population living off

the budmoth larvae. Predicting the dynamics of such

population systems with possible variations, extinctions,

and interactions at multiple levels is a major challenge.

We show here how the mere presence of additional para-

sitoid populations (having no direct mutual interactions)

in the system can bring about drastic changes in the

dynamics such as cessation of the cyclic outbreaks, or

production of periodic population bursts. This also

causes an increase in the time period of the budmoth

cyclic outbreaks. Our model which also includes parame-

ters to mimic environmental effects reproduces the 8–9

year cyclicity of budmoth outbreaks recorded over many

years in the Swiss Alps, as well as variations from this

recorded elsewhere. The populations survive extinction

by increasing their numbers—a phenomenon termed the

hydra effect, which is also exhibited by our model.

Introduction of multiple parasitoid species makes the

system more realistic, also providing a possible explana-

tion of why periodic outbreaks of budmoth infestation

have failed to recur in some parts of the world. Inclusion

of environmental parameters makes our model’s

predictability higher and closer to what is observed in

nature.

I. INTRODUCTION

The longest recorded time series of any population cycle

is of the larch budmoth which periodically causes large-scale

defoliation of larch trees at high altitudes. The budmoth popu-

lation cycles have been documented by many (see for exam-

ple, Refs. 1–6 and references therein). The time series that

span a period of 1200 years has 123 outbreaks1 which were

deciphered via dendrochronological studies and direct obser-

vations conducted in the Swiss Alps. The dominant frequency

of budmoth outbreaks here is 9 years which have occurred at

altitudes of 1500–2000 m above sea level.3 Similar studies in

the Tatra mountains in Carpathian ranges in Slovakia do not

reveal any cyclic outbreaks.2,3 Other parts of the world do

have irregular cycles, low amplitude cycles, and some regions

are devoid of larch budmoths implying a local extinction

event.3 In the Swiss Alps, the expected 9-year cyclic outbreak

failed to occur in 1990; indeed, they have not recurred there

so far after 1981, and this has been attributed in the literature

to climate change due to global warming.4 In an earlier

work,7 we were able to explain all the observations mentioned

above including occurrences of and variations from the 9 year

cycles and non-occurrences of cycles using a q-deformed tri-

trophic model incorporating climate parameters which we

proposed. This formulation enabled us to capture thea)Electronic mail: janaki05@gmail.com
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dynamics of this ecological system whose future state depends

upon its history and past events. The discrete time tritrophic

model we proposed had three populations: the larch tree rep-

resented by the plant quality index (PQI), the budmoth larvae

which defoliate the larch, and a parasitoid population which

live and feed upon budmoth larvae.

In this communication, we substantially extend the

model of larch budmoth (LBM) population cycles by add-

ing, in the tritrophic model, multiple species of parasitoids

which do not have any direct interactions mutually and

with the first parasitoid. This has, to our knowledge, not

been explored before in the literature in any mathematical

model of this system. We uncover that the periodic cycles

of the budmoth population which arise have longer time

periods than those with just one parasitoid species—a fea-

ture in agreement with experimental observations of the

system with three species which was sprayed with a bacil-

lus to control the budmoth larval population.5 We show that

addition of the second parasitoid species produces drastic

changes in the dynamics of the system: its mere presence

produces bursting oscillations of the budmoth population

and the larch needle lengths, and partial or complete cessa-

tion of all oscillations. Further, the system admits interest-

ing co-existing states such as periodic spiking behaviour

with oscillation death or periodic bursting oscillations with

oscillation death. We propose the introduction of the sec-

ond parasitoid as an alternative mechanism for the cessation

of periodic outbreaks seen in the Swiss Alps after 1981. We

illustrate our results by movies of the time series and bifur-

cation diagrams.

In Section II we briefly outline the concept of q-defor-

mations. In Section III we describe the existing framework

and motivate the readers to move towards a q-deformed

model (Section IV), followed by a discussion on various

parameters that affect the system. We introduce a second

parasitoid species into the system and show that this results

in an increase in the time period of the budmoth cyclic out-

breaks, as also observed experimentally. Some very interest-

ing dynamical phenomena which result are also discussed. In

Section V we briefly mention results we get when we extend

the model to include 5 parasitoids in the system. Our study is

useful as surveys and experimental observations have shown

the existence of several parasitoid species hosted by a bud-

moth larva. In Section VI we perform a detailed exploration

of the parameter space of our q-deformed tritrophic system

with one parasitoid species. This is aided through movies of

bifurcation diagrams which enable viewing the dynamics

with respect to two parameters at a time. The model is gener-

ally robust under parametric perturbations, a feature which

was not seen in previous (undeformed) models. The

Routh–Hurwitz (RH) criterion is used to discuss the stability

of the system, followed by numerical analysis.

II. q DEFORMATIONS

The concept of q-deformed analogues of numbers and

functions dates back to Euler8 and Heine9 and these were

developed further by Jackson.10,11 q deformed functions and

numbers are useful in explaining several experimental

observations. Examples in the literature include the work in

Refs. 12–20.

q-deformation of numbers and functions may be moti-

vated by considering the differential equation dy
dx ¼ y which has

the solution ln y ¼ x or y ¼ ex. The differential equation dy
dx

¼ yq on the other hand has the solution, y ¼ ½1þ ð1� qÞx�
1

1�q

� ex
q, which gives x ¼ y1�q�1

1�q � lnq y. Thus, y ¼ ex
q and x

¼ lnq y are generalized solutions and are respectively called

the deformed exponential and deformed logarithm functions.

As q! 1, the original exponential and logarithm functions are

recovered. q-exponentials were discussed in the context of

anomalous diffusion which was shown to arise from type-III

intermittent chaos in deterministic systems.12 This work was

the first to report asymptotically anomalous diffusion in cha-

otic systems. Expanding ex
q in a Taylor series around x¼ 0, a

new deformation scheme for numbers was obtained10 which

was used by Tsallis13

xq ¼
x

1þ 1� qð Þ 1� xð Þ ¼

x

2� q

1þ q� 1

2� q
x
: (1)

Here we make use of this deformation as it mimics some key

ecological features, as explained in Section IV.

III. THE TRITROPHIC SYSTEM IN BRIEF

As their foliage is consumed by the budmoth, the larch

trees show fluctuations in their biomass and nutritive content.

The larch is therefore characterized by its quality or health

using the plant quality index (PQI). This is an estimate of the

nutritive content of the plant measured by the needle length

Lt at time t, longer needles being deemed healthier. Since

larch needles average about 15 mm in length, the PQI is rep-

resented by a dimensionless quantity Qt

Qt ¼
Lt � 15

15
: (2)

The budmoth population density Nt is estimated by counting

the number of larvae in a given mass of larch branches. The

parasitoids Pt which live on the budmoth larvae are not

counted manually, but are assumed to be certain proportion

of the budmoth hosts.

Observations and a large body of work in the past to

understand the budmoth population cycles have led to the

necessity of having all three trophic levels for the

observed cyclicity in the system: the larch trees, the bud-

moths, and the parasitoids acting as a control on the

budmoths.4,7,21–24

There are two tritrophic models extant in the literature,

both due to Turchin—one in which the intrinsic growth rate

for the budmoth is constant and the second one in which it is

dynamically generated.

The model22 having a constant intrinsic growth rate k
for the budmoth, is described by the following equations:
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Ntþ1 ¼ kNt
Qt

dþ Qt
exp �bNt �

aPt

1þ awPt

� �

Ptþ1 ¼ bNt 1� exp � aPt

1þ awPt

� �� �

Qtþ1 ¼ 1� að Þ 1� Nt

cþ Nt

� �
þ aQt: (3)

Here, d denotes the half saturation constant for PQI, a is the

parasitoid searching rate, b indicates the budmoth intra-

specific competition, c the half saturation constant for the

budmoth uptake, and b denotes the number of viable parasit-

oid offspring produced by an infested host (budmoth) per

generation. w is the parasitoid wasting time and its value can

vary from 0 (when there is no time gap between two encoun-

ters with its prey) to 1 (when it is unable to find its prey).

The parameter a is the vulnerability of the plant to the

attacks of the budmoth, the plant recovery being given by

1� a. a can be related to the memory of the previous growth

of the larch and therefore has a relation with the nutrient con-

tent in the plant biomass at the end of the previous infesta-

tion by the budmoths.

The budmoth population dynamics is governed by a

Ricker26 like growth term and a Nicholson–Bailey27 type

term modelling its interaction with the parasitoid. The varia-

tion in the growth rate is captured by k multiplying a density

dependent feeding that uses a Holling type-2 function.28 This

model was simulated using dimensionless scaling29 and the

parameter values from Turchin’s work.21,29 Although 9 year

cycles were generated, the model is not robust under small

variations in the parameters. In Turchin’s other model21

where the budmoth intrinsic growth rate is dynamically gen-

erated, the equations for Pt and Qt remain as before but the

budmoth equation is different

Ntþ1 ¼ Nt exp r0 1� e�
Qt
d

� 	
� r0

K
Nt �

aPt

1þ awPt

� �
; (4)

where K is the carrying capacity of the budmoth and r0 is the

intrinsic growth rate at the first time step when the system

just begins to evolve. The values of various parameters used

in Ref. 21 are shown in Table I. This model also yields 9

year cycles as stated;21 however, even a small variation of

parameters within the error bars shown produce completely

different periodicities.

IV. q-DEFORMED MODEL WITH TWO PARASITOIDS

The budmoth tritrophic ecological system is one which

bears memory of previous year’s growth. The growth of

fresh larch needles, the nutrition present therein, and the

population density of the infesting budmoths are related to

each other in a rather complex manner. This is because the

extent to which the larch foliage spreads depends upon the

extent to which the trees have recovered from the infestation

of the previous cycle of budmoths, which in turn depends

upon the quality of larch needles and their availability then

extant, as well as, additionally, the extent to which parasi-

toids have consumed budmoth larvae, etc. The probability of

the system being in any given state is no longer the same for

all states, since memory of the previously available resources

of larch foliage, the previous plant quality index, the previ-

ous population densities of the budmoths as well as of the

parasitoids all contribute to a current probability distribution;

some probabilities are enhanced while others are suppressed.

Hence, instead of considering this ecological system as a

simple, ergodic one, it is much more apt to view it as a

q-deformed system, in which, depending upon the value of

q, probabilities of occurrences of events would be enhanced

or suppressed.

We use q-deformed variables to describe the populations

in the system. Since each organism may respond differently

to stimuli, one can assume distinct values of deformation

parameter qi for each species i. For simplicity, we make the

choice: qx¼ 1 for budmoth population density x, so that

xq¼ x. We introduce q-deformed variables13 for the parasi-

toids and PQI for the following reasons. An assumption30

usually made that the host density (budmoth larvae) is

completely converted into parasitoid density just as in the

Lotka–Volterra interaction31–33 results in over-counting of

the parasitoid numbers. The hyperbolic (Holling type-2)

functional response avoids this overcounting. In our

q-deformed model, the overcounting is avoided by taking

qparasitoid 6¼ 1. In the PQI equation, there is a need for incor-

porating density dependence of removal of the larch needles.

This may be seen as follows. The wasteful feeding by the

budmoths results in a lot of damaged foliage which then

evolve in time depending upon environmental conditions.

For low PQI, budmoth feed on whatever foliage is available,

whereas for large PQI, budmoth consumption first rises and

then attains saturation—thus at any given time, the availabil-

ity of PQI (including partially consumed or damaged nee-

dles) is density dependent. This biologically true feature of

density dependent removal of foliage (which is absent in the

other models in the literature) is captured in our models (see

also Refs. 7 and 39) by q-deformation in the z variable, i.e.,

by taking qPQI 6¼ 1 in the PQI equation.

There are about 94 species of parasitoids which affect

the larch budmoth.24 It was reported after several surveys by

Mills25 that a budmoth can host an average of as many as 5.4

parasitoid species in an Upper Engadine site in any one year.

The various parasitoids and the host form a parasitoid com-

plex. The parasitoids attack the budmoth host during the var-

ious stages of the budmoth’s life. Some parasitoids live in

the larval stage of host, while some live their lives from the

larval stage of the budmoth until the budmoth’s pupal stage.

Thus various interactions are possible in a parasitoid

complex.

The larch budmoth can hence host many parasitoids or

bacteria simultaneously. It has also been reported in Ref. 5

TABLE I. Parameters used in Turchin’s model-I.

Parameter Range Parameter Range

r0 2.5 6 0.2 a 2.5 6 1

a 0.5 6 0.1 w 0.17 6 0.2

K 250 6 50 c 0.7 6 0.2

d 0.22 6 0.05 d 150 6 150
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that bacterial sprays sprayed on budmoth larvae had the

effect of increasing the time taken to attain the peak of the

periodic infestation outbreaks.

To study the effect of the presence of an additional para-

sitoid species in the model, we consider first a simple situa-

tion where there are 4 interacting species: the larch budmoth

population density (represented by x), the larch tree (repre-

sented by the PQI z), and population densities y and v of two

species of parasitoids. The populations y and v do not inter-

act with each other, though they both feed on the budmoth

larvae. The equations in dimensionless form for this four-

dimensional system at time t are

xtþ1 ¼
qzzt

1þ lzzt
kxt exp �xt �

qyyt

1þ lyyt
� qvvt

1þ lvvt

� �
; (5)

ytþ1 ¼ cxt 1� exp �
qyyt

1þ lyyt

� �� �
; (6)

vtþ1 ¼ jcxt 1� exp � qvvt

1þ lvvt

� �� �
; (7)

ztþ1 ¼ 1� að Þ 1� xt

mþ xt

� �
þ a h� sxtð Þ qzzt

1þ lzzt
; (8)

li ¼
qi � 1

2� qi
qi ¼

1

2� qi
; i ¼ y; v; zð Þ: (9)

The dimensionless variables xt; yt; zt are related to Nt, Pt, and

Qt of Equations (3) and (4) through the transformations:

xt ¼ bNt, yt¼ aPt, and Qt¼ zt.

Here, c ¼ ab
b indicates the efficiency of the parasitoid in

capturing its host among the available hosts. Thus, c indicates

how well the parasitoid performs and how well its population

density increases. The quantity m ¼ bc is a measure of the

efficiency of the budmoth in devouring the larch needles. The

parameter j decides which of the two parasitoids is stronger.

When j¼ 1 both parasitoids have the same virulence and

fecundity. For j < 1 the parasitoid v is weaker, while for

j > 1 parasitoid y is weaker than v. h and s are climate

parameters which we had introduced in Ref. 7 to incorporate

the effects of environment34–37 on the (3-dimensional) system

having just one parasitoid species. It has been noted that

favourable environments play a vital role during recovery of

larch trees after an infestation. If environmental conditions

are good, the larch trees recover; else they do not, and the

resulting needles are shorter, bulkier, and less nutritious for

the budmoth. s controls the rate at which foliage is removed.

The need for including environmental/climate effects

which could alter the entire dynamics of ecosystems has

been emphasized in the literature.38

Our equation for the plant quality index contains three

terms—the first term for the evolution of leaves that are not

affected, the second term which governs the decay of PQI

that is affected, and the last term represents the removal of

PQI by the budmoth. Because of the introduction of climatic

factors, our model which we proposed in Ref. 7 successfully

explained the collapse of the budmoth cyclic outbreaks in

the Swiss Alps after 1981 and allowed the system to also

have longer periodicities as well as loss of cyclic behaviour.

In an earlier work39 we had related qy to w: ly ¼
qy�1

2�qy

¼ w. Since ly varies from 0 to 1, qy can vary from 1 to 2.

Similarly we had related qz to the budmoth intraspecific

competition coefficient b: qz ¼ 1þ b, from lz ¼ 1
d and

qz ¼ 1
bd. qz is also restricted to vary between 1 and 2.

Our earlier model39 was designed to bring in a density

dependent removal of the larch needles through the term

azqt
x in place of their constant removal which is in Turchin’s

models. This corresponds to the situation s¼ 1, h¼ 0 of our

later model in Ref. 7.

That model39 (without a factor for evolution of damaged

leaves), however, is suited to situations where the devoured

leaves do not sprout back. This can happen when the trees

are destroyed beyond repair. This is seen in the French Alps,

where human intervention (in the form of logging for timber,

conversion of forest land to pastoral grounds, etc.) has

resulted in a permanent destruction of larches.6

In Turchin’s model parameters such as w (related to qy

in our model), d (related to qz in our model), m, c, a cannot

change as they are species-specific. Only long term forces

like evolution can change them. Thus the only parameter

that is truly free to vary in that model is k. Our model in

Equations (5)–(9) has 3 other free parameters: h, s, and j.

The stability of our 4-dimensional system is studied

using the Routh–Hurwitz criterion. We discuss this in the

Appendix; it is seen that both the single parasitoid system

(j¼ 0) and one with two parasitoids (j 6¼ 0) admit limit

cycles in certain parameter regimes. The system with four

interacting species presents very interesting behaviour: while

in some regimes show cyclic behaviour, others exhibit peri-

odic bursting behaviour. In certain domains there is both par-

tial and complete amplitude death, or co-existence of

bursting and oscillation death.

In all figures in this paper, we have used the following

notation: LBM denoting the budmoth population density x,

PQI standing for the plant quality index z, “Parasitoid 1”

denoting y, “Parasitoid 2” denoting v, etc.

A. Oscillation quenching in the 4-dimensional system

Destruction of oscillations can occur via amplitude

death or oscillation death.40 Whereas in amplitude death

cycles die and reach a steady (homogeneous) state, in the

case of oscillation death the final state is inhomogeneous. In

Ref. 40 situations were discussed where both amplitude and

oscillation deaths occur due to a direct coupling between the

oscillators, and the coupling strength plays a vital role in

quenching the oscillations—all the interacting species under-

went decay of oscillations. It was emphasized in Ref. 40 that

co-existence of attractors (both limit cycles and steady states

in its phase space) is required for oscillation death to occur.

In our 4-dimensional system with 2 parasitoids, there is

no diffusive or direct coupling between the variables as in

the situations discussed in Ref. 40 but rather, it occurs in the

exponential, in the budmoth equation, through differences of

the q-deformed variables y and v. The coupling parameter

here is j, which compares the strengths or efficiencies of the

two parasitoids in infesting the budmoths. Higher the value

of j greater is the infesting ability of the second parasitoid.
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Bursting behaviour is seen for the budmoth population and

the PQI in several parameter regimes. For different values of

j and other parameters, different kinds of interesting behav-

iours emerge.

1. Co-existence of attractors

The system is very sensitive to initial conditions as dif-

ferent initial conditions land it in different parts of the phase

space. A representation of this is seen in Figs. 1 and 2,

where the evolution of the system is shown for three differ-

ent initial conditions; co-existing solutions are clearly seen.

This is also clearly demonstrated in the accompanying sup-

plementary multimedia movie file showing co-existing sol-

utions. It is seen in two of the solutions (see Fig. 1) that the

presence of the second parasitoid destroys oscillations in

the system.

2. Oscillation death and amplitude death

In Fig. 3 it is seen that all the four species oscillate for

sometime before experiencing complete death of oscilla-

tions. In particular, the budmoth population and PQI shows

bursting behaviour. For the parameters used in Fig. 4, all

four species oscillate when 0:56 < j < 1:84. However, for

j � 0:56 and j � 1:84 one of the parasitoids is completely

wiped out: the mere presence of one parasitoid drives the

other to extinction. The introduction of a second virulent par-

asitoid causes more casualty of the host. Due to the increase

in loss of the host, the first parasitoid gradually diminishes in

number and becomes extinct, while the second one is able to

survive on low host numbers. It should also be noted that the

fecundity of the virulent host is higher, as c is proportional to

the number of surviving parasitoids that are produced. This

is also seen in the bifurcation diagram of the budmoth

density with respect to j (Fig. 5). One can see domains of

FIG. 1. Co-existence of attractors in the 4-d system (qy ¼ qv ¼ 1:13; qz

¼ 1:34; a ¼ 0:5; c ¼ 12;m ¼ 13; h ¼ 0:5; s ¼ 0:01; k ¼ 8:0; j¼ 0.95) for 3

different initial conditions (ic1, ic2, ic3). (i) ic1: x0 ¼ 0:8; z0 ¼ 1; y0 ¼ 0:1;
v0 ¼ 0.0 (red), (ii) ic2: x0 ¼ 0:8; z0 ¼ 1; y0 ¼ 0:1; v0 ¼ 0.1 (blue), and (iii)

ic3: x0 ¼ 0:8; z0 ¼ 1; y0 ¼ 0:1; v0 ¼ 0.2 (green). In this example, when

v0 6¼ 0 (green and blue), cycles of all 3 species are destroyed. v0¼ 0 is the

3-population tritrophic model.

FIG. 3. Oscillation death in all four species (parameter values and initial

conditions: qy ¼ qv ¼ 1:13; qz ¼ 1:34; a ¼ 0:5; c ¼ 12;m ¼ 13; h ¼ 0:5;
s ¼ 0:5; k ¼ 8:0; j ¼ 1:07; x0 ¼ 0:05; y0 ¼ 1; z0 ¼ 1; v0 ¼ 0.1).

FIG. 4. Partial amplitude death in the 4-d system: When j is changed,

amplitude death occurs in one species alone. Left panels: j ¼ 0:56; right

panels: j ¼ 1:84. Other parameters: qy¼ qv¼ 1.13, qz¼ 1.34, a¼ 0.5,

c¼ 12, m¼ 13, h¼ 0.5, s¼ 0.5, k¼ 8.0. Initial conditions: x0¼ 0.05, z0¼ 1,

y0¼ 2, v0¼ 0.1.

FIG. 2. Screenshot of a time series video for 3 different initial conditions

showing amplitude death in parasitoid species y and v of the 4-d system

obtained by varying j from 0 to 2. Parameter values: qy ¼ qv ¼ 1:13;
qz ¼ 1:34; a ¼ 0:5; c ¼ 12;m ¼ 13; h ¼ 0:5; s ¼ 0:5; k¼ 8.0 with different

initial conditions (ic1, ic2, ic3). (i) ic1: x0 ¼ 0:05; z0 ¼ 1; y0 ¼ 2; v0 ¼ 0.1

(red), (ii) ic2: x0 ¼ 0:05; z0 ¼ 1; y0 ¼ 2; v0¼ 0.3 (blue), and (iii) ic3: x0

¼ 0:05; z0 ¼ 1; y0 ¼ 1; v0¼ 0.1 (green). Different initial conditions evolve

differently. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4962633.1]
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FIG. 5. Screenshot of a bifurcation diagram video with respect to j for

varying k. (m¼ 13, c¼ 12, a¼ 0.5, h ¼ 0:5; s ¼ 0:5; qy ¼ 1:13; qv ¼ 1:13;
qz¼ 1.34). (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4962633.2]

FIG. 6. Co-existing solutions in the 4-d system for j¼ 1, a¼ 0.5, c¼ 12,

m¼ 13, h¼ 0.5, s¼ 0.5, k¼ 8.0, qy¼ qv¼ 1.13, qz¼ 1.34. Top panel: Both

parasitoids show amplitude death for initial conditions: x0¼ 0.05, z0¼ 1.0,

y0¼ 2.0, v0¼ 0.1. Bottom panel: Both parasitoids show completely synchro-

nized periodic oscillations for initial conditions: x0¼ 2.6540, z0¼ 0.2082,

y0¼ 0.2135, v0¼ 1.4653.

FIG. 7. Co-existing spiking and fixed point solutions for the 4-d system for

j ¼ 1:06, a ¼ 0:5, c¼ 12, m¼ 13, h¼ 0.5, s¼ 0.5, k ¼ 8:0; qy ¼ qv ¼ 1:13;
qz ¼ 1:34. Different initial conditions are: (i) x0 ¼ 0:05; z0 ¼ 1; y0 ¼
2; v0 ¼ 0:1 (red), (ii) x0 ¼ 0:05; z0 ¼ 1; y0 ¼ 2; v0 ¼ 0:3 (blue), and (iii)

x0 ¼ 0:05; z0 ¼ 1; y0 ¼ 1; v0 ¼ 0:1 (green).

FIG. 8. Co-existing bursting and fixed point solutions for the 4-d system for

j ¼ 1:08, a ¼ 0:5, c¼ 12, m¼ 13, h¼ 0.5, s¼ 0.5, k ¼ 8:0; qy ¼ qv ¼ 1:13;
qz ¼ 1:34. Different initial conditions are: (i) x0 ¼ 0:05; z0 ¼ 1; y0 ¼ 2;
v0 ¼ 0:1 (red), (ii) x0 ¼ 0:05; z0 ¼ 1; y0 ¼ 2; v0 ¼ 0:3 (blue), and (iii)

x0 ¼ 0:05; z0 ¼ 1; y0 ¼ 1; v0 ¼ 0:1 (green).

FIG. 9. Variation in PQI obtained from

(a) Turchin’s model-1 with 1 parasitoid

species; (b) Turchin’s model-1 in

which we have added a 2nd parasitoid

species; (c) our q-deformed model

with 1 parasitoid species; (d) our

q-deformed model with 2 parasitoid

species (Eqs. (5)–(9). Both (a) and (b)

show a very small needle-length varia-

tion which is unrealistic while both (c)

and (d) show a significant variation in

the lengths as seen in nature. Note the

different scales on the y-axis.
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oscillation death and oscillating solutions as j varies.

Although both parasitoids do not mutually interact directly,

one of them pushes the other out. This is manifested as partial

amplitude death in our system.

3. Co-existence of periodic oscillations and amplitude
death for j 5 1

When the virulence of the parasitoids is comparable, i.e.,

when j¼ 1, we interestingly get a situation of co-existence.

While most of the initial conditions lead to oscillation death

of the PQI and budmoth population, and amplitude death of

both parasitoid populations, a smaller percentage of the initial

conditions produce periodic bursting in the budmoth popula-

tion and PQI, and mutually completely synchronized periodic

oscillations in both the parasitoids (Fig. 6). This is extremely

interesting as this provides a possible explanation for the ces-

sation and non-recurrence of the regular 9 year periodic bud-

moth outbreaks in the Swiss Alps after 1981 for the first time

after 1200 years.1 Also, the variations in the periodicity of the

outbreaks seen in the French Alps6 and the historical absence

of cycles in the Carpathian Tatra mountains could be attrib-

uted to the presence of a second parasitoid species in the sys-

tem. Figures 7 and 8 illustrate the co-existence of spiking and

bursting solutions, respectively, with fixed point solutions—

very small variations in j change normal periodic behaviour

to periodic bursting. From Fig. 8 it is seen that as the bud-

moth population rises the PQI falls and vice versa, and when

the budmoth population oscillates about the fixed point solu-

tion, so does the PQI. The population densities of the parasi-

toids begin to peak when the budmoth population is at its

maximum and fall when the budmoth population is nearly

zero—the oscillations of the four species show synchronized

behaviour, and as previously stated, bursting oscillations

occur only for some range of j values. All these observations

are clearly seen in the supplementary multimedia video file

linked to Fig. 2.

FIG. 10. Addition of a second parasitoid in the system increases the time

period of budmoth outbreaks. 3-d model (1 parasitoid) is shown in blue, and

4-d model (2 parasitoids) is shown in green. Parameters: qy ¼ qv ¼ 1:13;
qz ¼ 1:34; a ¼ 0:5, c¼ 12, m¼ 13, h¼ 0.5, s¼ 0.5, k ¼ 6:5; j ¼ 1:95.

Initial conditions: x0 ¼ 0:5; y0 ¼ 1:7; z0 ¼ 1; v0 ¼ 0:2. The time period is

shifted by almost 2 years.

FIG. 11. Time series showing different dynamical behaviour for different

initial conditions for the 7-d system (five parasitoid species) Parameters:

qi ¼ 1:13; m¼ 13; c¼ 12;qz ¼ 1:34; a¼ 0:5; h¼ 0:5; s¼ 0:5; j1 ¼ 0:75;
j2 ¼ 0:8; j3 ¼ 0:84, and j4 ¼ 0:78. Initial Conditions: (a) x0 ¼ 0:2134; y0 ¼
1:2576; z0 ¼ 0:4577; p0 ¼ 0:7182; u0 ¼ 3:7462; v0 ¼ 0:0087; w0¼1.9486

(Bursting and spiking); (b) x0 ¼ 0:2828;y0 ¼ 1:6414; z0 ¼ 0:4556; p0 ¼
0:8392; u0 ¼ 1:3592; v0 ¼ 0:3463;w0¼1.3630 (oscillation death); (c) x0 ¼
0:0856; y0 ¼ 2:9617; z0 ¼ 0:5574; p0 ¼ 4:1272; u0 ¼ 0:5562; v0 ¼ 0:4435;

w0¼2.1998 (Bursting in budmoth and PQI); (d) x0 ¼ 0:4002; y0 ¼ 1:0858;
z0 ¼ 0:6006; p0 ¼ 0:0670; u0 ¼ 2:5175; v0 ¼ 0:2879; w0¼2.2384 (Bursting

with alternate 2-spike and 3-spike bursts).
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An important point to bear in mind is that a defoliation

event would be expected to result in a considerable variation

in the needle lengths. This is also consistent with observations

as cyclic defoliation leads to cyclic browning of larch forests.

However, the PQI in Turchin’s (scaled) models does not show

much variation although it exhibits cycles. Moreover, it

always maintains a very high value which is unrealistic

because actual observations show a large variation. Those

models do not produce small needle lengths characterizing

heavy defoliations. Our q-deformed model mimics actual

observations and produces significant variations in needle

lengths. A comparison of the variation in PQI obtained from

Turchin’s model and that from our q-deformed model is given

in Fig. 9 (note the different scales on the y-axis).

4. Effect of the second parasitoid on the time period

Due to the presence of the second parasitoid, the time

period of the system increases as depicted in Fig. 10. This is

understandable as the budmoth is now additionally under

attack by the second parasitoid species, so that it takes longer

to recover its peak value of population density. This is in

agreement with results of experiments5 where a bacillus

(corresponding to parasitoid 2) was sprayed over the bud-

moth resulting in an increase of the time period of the bud-

moth outbreak.

We therefore propose that changes (increases) in the

time period of recurrence of budmoth outbreaks observed at

different times in different parts of the world could also be

due to the presence of a second parasitoid species infesting

the larch budmoths.

V. GENERALIZATION TO 5 PARASITOID SPECIES (7-d
SYSTEM)

As mentioned in Section IV, it has been reported in Ref.

25 that a budmoth in the Upper Engadine area of the Swiss

Alps is known to host an average of 5.4 parasitoid species in

a year. It is therefore interesting to know the dynamics which

our q-deformed model exhibits when say, five parasitoid spe-

cies are present at a given time on a budmoth. We repeated

the simulations of our model (Eqs. (5)–(9)) for 5 parasitoids.

Introducing each new parasitoid species brings in 2 parame-

ters: ji, and qi the parasitoid wasting time (i ¼ 1; 2; 3; 4
denoting the additional parasitoid species p; u; v;w respec-

tively). Adding a 5th parasitoid species produces cycles for

certain values of initial conditions. However if the initial

conditions are such that any one parasitoid species has a

large number density, the system undergoes an oscillation

death for the budmoth and PQI while all the parasitoid

FIG. 12. Co-existence of all 7 species, all exhibiting cycles. Parameters: c ¼
1:9; h ¼ 0:5; s ¼ 0:5; qy ¼ 1:13; m ¼ 13; a ¼ 0:5; qz ¼ 1:34; j1 ¼ 0:78;
j2 ¼ 0:8; j3 ¼ 0:84; j4 ¼ 0:82. Initial conditions: x0 ¼ 0:2940; y0 ¼
0:6270; z0 ¼ 0:1959;w0 ¼ 0:3317; v0 ¼ 0:3679; p0 ¼ 0:5663; u0 ¼ 0:2088.

FIG. 13. Attractors for the 7-d system. Parameters: qi ¼ 1:13; m ¼ 13; qz ¼
1:34; a ¼ 0:5; h ¼ 0:5; s ¼ 0:5; j1 ¼ 0:75; j2 ¼ 0:8; j3 ¼ 0:84; j4 ¼ 0:78.

(a) c¼ 12. Three closely spaced attractors can be seen—the green one corre-

sponds to spiking behaviour, the blue one corresponds to bursting behaviour,

and the third attractor is a stable fixed point shown in red. This was originally

plotted using 2000 initial conditions. However, for the sake of visual clarity

only 100 initial conditions are shown here; (b) c¼ 2.25. Here 5 closely lying

attractors are seen (coloured in green, grey, magenta, light-blue, and mauve).

The system was run for 10 000 iterations and the last 1000 points were used

to generate the plot. 1000 random initial conditions were used.
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populations undergo an amplitude death. The system is

highly parameter dependent and shows a variety of dynami-

cal behaviour. Shown in Figures 11 and 12 are some repre-

sentative time series.

For the simulations we have given all the parasitoids the

same value for the wasting time; this still leaves four values

of ji which must be adjusted along with the initial conditions

to have a specific behaviour. In our simulations we have

checked 500 random initial conditions that give rise to cyclic

behaviour. Fig. 11(d) shows an interesting bursting behav-

iour with alternate 2-spike and 3-spike bursting. In certain

other parameter domains irregular bursts are generated (not

shown). One needs to exhaustively explore the parameter

space to know of all the dynamical possibilities as ecological

systems involve a multitude of complex interactions. We see

sensitive dependence to initial conditions. Stable cycles exist

for certain values of the initial conditions, while certain ini-

tial conditions lead to some parasitoids being wiped out. In

certain parameter domains, all species co-exist and exhibit

cycles (Fig. 12). For bursting to occur in the budmoth and

PQI, we observe that at least 2 parasitoid species have to co-

exist for the larch budmoth system. A 3-dimensional projec-

tion of the attractor for the 7-dimensional system (5 parasi-

toids) is plotted in Fig. 13 for 2 different values of c. Fig.

13(a) (for c¼ 12) shows that spiking and bursting dynamics

belong to different basins of attraction. Different initial con-

ditions belonging to the different basins of attraction go to

different attractors—one for spiking behaviour, one for

bursting dynamics, and the third is a fixed point—and this

illustrates the non-ergodicity of the larch budmoth system.

Introduction of each new species brings in more complexity.

Fig. 13(b) shows existence of multiple (five) attractors for a

lower c value (c¼ 2.25) for this 7-dimensional system. The

consequent expansion of the parameter space implies that

now there is more stringency in the choice of the parameter

values for reproducing the same dynamics that occurred for

the lower dimensional case. Cycles that occurred so easily in

our three dimensional system (with 1 parasitoid species)

become more and more rare with the same parameter set as

we add more and more species.

VI. THE SPECIAL CASE j 5 0 (3-d SYSTEM)

A. Neimark–Sacker bifurcation

Numerical simulations confirm the creation of limit

cycles via a Neimark–Sacker bifurcation. As the parameter c
or k is varied, the stable fixed point becomes a stable spiral

which loses its stability and a limit cycle is born surrounding

it. These stable limit cycles manifest as population cycles.

We see from the time series and the bifurcation diagrams

that there is synchrony between the three interacting species.

Fig. 14 shows a Neimark–Sacker bifurcation with respect to

parameter k. The inset (c) in Fig. 14 exhibits the stable fixed

points turning into stable spirals as k increases. Stable limit

cycles are born for k increasing beyond 1.9; further increase

in its value results in the creation of limit cycles with larger

amplitudes. Fig. 15 similarly demonstrates the formation of

limit cycles as c is varied; the topmost image shows limit

cycles for the 3-dimensional system with one parasitoid spe-

cies (j¼ 0), the middle one for the situation j¼ 1 when both

parasitoids have identical virulence and fecundity, while the

bottom plot shows limit cycles for j ¼ 1:95.

B. Bifurcation diagram videos with 2 varying
parameters

We generated bifurcation diagrams for the system when

two parameters say (i, j), ði; j ¼ h; s; a; k; c;m; qy; qzÞ vary

simultaneously, in the form of videos (see supplementary

multimedia files).

As the parameter i is varied, the bifurcation diagram

with respect to different values of j are calculated and stored.

As the movie is played, each frame corresponds to a different

FIG. 14. Neimark–Sacker Bifurcation

with respect to k in the 3-d system

(one parasitoid species) keeping other

values fixed at qy¼ 1.13, m ¼ 13, c ¼
12, qz¼ 1.34, a¼ 0.5, h¼ 0.5, and

s¼ 0.5.
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i having a bifurcation diagram with respect to j. There are

8 parameters in the system; hence, taking two at a time

results in 56 combinations. The results of these bifurcation

videos are shown in Table III. Table II provides a guide for

reading Table III. It is seen that a Neimark–Sacker bifurca-

tion occurs with respect to all parameters.

C. Chaotic bubbles and multistability

There is an intriguing presence of bubbles, including

chaotic bubbles, in the bifurcation diagrams with respect to

all the parameters in the system except c, qy, and m. As

bubbles are indicative of the hydra effect, a seemingly

paradoxical phenomenon involving an increase in the pop-

ulation size of a species in response to an increased mortal-

ity rate,41 our study indicates that several routes exist in

our complex tritrophic system by which extinction of any

of the three species may be avoided. This is particularly

visible for variation with respect to a. When the plant

recovery rate 1� a decreases with increasing a, the plant

quality degrades slowly with increasing budmoth infesta-

tion, so that one expects complete destruction of the larch

plant. However, the larch species does not actually die out,

but rather springs back to life. The first instantaneous

response to extreme stress on populations would be an

increased growth rate. Increased stress/constraints on the

system can induce more nonlinearities and variability in

the time series than that in a system in the absence of con-

straints (such as infestation by a predator/parasite).42 In

our model, the parameters a; qz, k, h, and s, all affect the

populations rapidly and therefore any variations in these

could result in a situation reminiscent of the hydra effect.

Fig. 16(a) shows the presence of several chaotic bubbles

for 0:358 < h < 0:716 which are created in the periodic

window around a ¼ 0:5. Another interesting feature of the

system is the occurrence of multistable states in different

domains of the parameter space. Fig. 16 (right) shows the

simultaneous presence of seven stable limit cycles between

which the system hops at c¼ 7 and qz ¼ 1:99 (when the

budmoth intraspecific competition is very high). The

simultaneous existence of 7 stable limit cycles shows the

various possibilities for the system of being in stable peri-

odic states for a given parameter set. In Fig. 17 these limit

cycles can be seen more clearly.

D. Influence of different parameters on the time period

Since the system is highly nonlinear, it is quite difficult

to pinpoint accurately how the time period is affected.

Keeping 7 parameters constant, the remaining one is varied

and its effect on the time period is noted. In Fig. 18, we have

plotted the trends obtained for the time period of budmoth

outbreaks with a change in the parameters, generated by

picking the frequency corresponding to the maximum power

in the fast Fourier transform of the time series. (i)

Numerically, we find that as k increases, the time period

decreases. This is understandable since the population

increases faster with increasing growth rate, depleting the

resources more rapidly which consequently causes a decline

in the budmoth population resulting in smaller cycles. (ii)

Similarly increasing h results in a good growth of larch

foliage which leads to an improvement in the budmoth popu-

lation followed by a quick depletion of available food again

leading to its population decline, resulting in smaller cycles.

(iii) s does not change the time period significantly except at

very high values where the time period shows large fluctua-

tions. (iv) As m is increased, the time period stabilizes

around 9 years except for small fluctuations about this value.

Thus, the way the budmoth feeds does not appear to have

much effect on the system. (v) Increasing the value of c, the

efficiency of the parasitoid in killing the budmoth, keeps the

budmoth population in check, making it taking longer to

FIG. 15. Neimark–Sacker bifurcation with respect to c keeping other values

fixed at qy ¼ 1:13;m ¼ 13; k ¼ 8; qz ¼ 1:34; a ¼ 0:5; h¼ 0.5, and s¼ 0.5

for (a) j¼ 0 (3-d system); (b) j ¼ 1; qy¼ 1.13 (c) j ¼ 1:95; qy¼ 1.13.
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reach its peak value, thus increasing the time period. (vi) As

the plant vulnerability a increases, the larch needles are

quickly depleted due to heavy infestation. This results in the

larch foliage taking longer to re-grow which makes the cycles

longer and more difficult to attain if a takes very high values.

(vii) As qy related to the parasitoid wasting time increases, the

budmoth numbers increase. This depletes larch foliage and

the consequent reduction in available food brings down the

budmoth population resulting in smaller cycles. (viii) There is

not much change in the time period with respect to qz. From

the figures it is also clear that the 9 year cycles stay despite

perturbations on the parameters. Thus our model is robust to

small variations in the parameters, producing cycles of nearly

the same periodicity which is also what is observed in nature.

This may be contrasted with earlier models extant in the litera-

ture21–23 where even a small change would give rise to a

completely different time period.

VII. CONCLUSIONS

We have analysed here four and higher dimensional sys-

tems with two or more parasitoids. They display interesting

TABLE II. Abbreviations used in Table III.

PD/PH Period doubling (1 into 2)/period halving (2 into 1)

NS/RNS Neimark–Sacker bifurcation/reverse Neimark–Sacker bifurcation

PP Periodic pattern

SRC/SNK The region from where fixed points spread out (source)/annihilate (sink)

SB Simple Bubble (closed structure formed by a PD,PH)

CB Complex Bubble (formed via a few PD and PH)

Z Any of the 8 parameters with respect to which the bifurcation diagram is generated

Zc The value of Z at which NS occurs

ChB Chaotic bubble (many PD, PH chaos inside bubble)

Zmax The value of Z at which BC occurs

CR/Ch Chaotic region (fine distribution of points)/Chaos

DB/IB Distorted bubble/Interlaced bubbles (many bubbles join)

BC Boundary crisis (sudden disappearance of points after a Z)

Bfd Bifurcation diagram

IC Interior crisis (expansion or compression of size of attractor)

k Intrinsic growth rate (0 � k � 12)

"/# Increases/decreases

a Plant vulnerability (0 � a � 1)

h/s Environmental factors (0 � h; s � 1)

!/ Bfd shifting towards right/left (higher/lower values)

c Efficiency of parasitoid (0 � c � 15)

Z>/Z</X Greater/lesser values of parameter /No drastic change from the original configuration

m Budmoth’s efficiency of infesting(0 � m � 20)

qz/qy Intraspecific competition/parasitoid wasting time (1 � qz; qy � 2)

PW/CR/SB/ChB/CB Periodic window/chaotic region/simple bubble/chaotic bubble/complex bubble

PW to CR PW becomes SB, turns into CB and becomes ChB. Finally, CR of all bubbles form CR of the Bfd

Popmax Maximum population attained by the species

OD Oscillation death
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FIG. 16. Chaotic bubbles and multistability. (a) Screenshot of a bifurcation diagram video with respect to a for varying h showing chaotic bubbles for the 3-d sys-

tem (one parasitoid species). Parameters: k ¼ 8; qy ¼ 1:13; m ¼ 13; c ¼ 12; s¼ 0.5, and qz¼ 1.34 (Multimedia view). (b) Screenshot of a bifurcation diagram

video with respect to c for varying qz. At c¼ 7, seven stable limit cycles simultaneously exist. An interesting view of this is depicted in Fig. 13. Parameters: k ¼ 8;
qy ¼ 1:13; m ¼ 13; h ¼ 0:5; s ¼ 0:5; a¼ 0.5. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4962633.3] [URL: http://dx.doi.org/10.1063/1.4962633.4]

TABLE III. Analysis of bifurcations for the 3-d system with one parasitoid species. These videos were generated for value of a ¼ 0:5, h¼ 0.5, s¼ 0.5,

qy ¼ 1:13; qz ¼ 1:34, k¼ 8, c¼ 12, and m¼ 13. The entries i, j here represent the two parameters that are chosen to make the video. The parameters in the col-

umns (j) are those on the abscissa of the bifurcation diagrams while the parameters in the rows (i) represent the parameters which are seen varying on the top

in the videos.

a h s m k c qy qz

a … Popmax " SNK at s¼ 0.5 Satellites Popmax " cc " RNS " !
Satellites Popmax # SNK 8 < m < 15 kc " CR to PW Popmax # SNK at

PW to CR SB to CR SNK at k ¼ 8 Popmax # PW to CR qz ¼ 1:5

CR to SB kmax # PW to CR CR to PW

h CR to PW … CR to PW PW to CR RNS # !Slow X  
SNK at RNS Satellites CR to PW kmax # Popmax " Satellites

Popmax "  

s RNS at a ¼ 0:9  - IB PW to CR NS X SNK at

! PW to CR CR to PW CR to PW Slow! qz ¼ 1:75

SNK at RNS pt CR to PW kmax # PW to CR PW to CR

CR to PW hmax # NS at k ¼ 2:5 CR to PW qzc #
PW to CR

m RNS at a ¼ 0:9 Popmax " X - RNS RNS # RNS # sc " X

SNK at a ¼ 0:9 PW to CR Popmax " Popmax " Popmax "
CR to PW X Satellites X

PW to CR

k RNS " Popmax " sc " CR to PW - cc # RNS qzc #
Popmax " hc # Popmax " mc # ! qyc "  

SRC at a ¼ 0:25  PW to CR Popmax " SB to CR Popmax " CR to PW

PW to CR CR to PW CR to PW PW to CR Satellites

CR to PW Satellites

c SRC at RNS pt Popmax " cc # CB at c¼ 1.8 kc # - RNS " SRC at

 PW to CR Quasi periodic Bubble expands Satellites PW to CR qz ¼ 1:5

MS satellites SNK at s¼ 0.5 SB to CR PW to CR PW to CR

SNK at a ¼ 0:3 Quasi periodic NS

qy RNS a ¼ 0:9 MS PW CR sc " PW CR SNK ! …  
OD at qy ¼ 1.42 OD at qy ¼ 1.35 OD at qy ¼ 1.35 Satellites SB to CR OD at SB to CR

PW to CR before PW CR CB CW  PR to SB qy ¼ 1.35 CR to SB

qy¼ 1.42. kmax " RNS #

qz RNS a ¼ 0.9 X PW TO CR Popmax " NS Popmax " Popmax "
! ac # Popmax " X  CR to PW …
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behaviours, such as bursting, partial oscillation death, com-

plete oscillation death, and co-existence of solutions in the

dynamics of the larch budmoth. The system shows bursting

behaviour for a certain parameter domain when two or more

parasitoid species are present.

The parameters h and s introduced in our model track

the changes in the environment due to global warming, use

of pesticides, etc. Both terms regulate the dynamics and are

required to correctly reproduce the relative frequencies of

budmoth outbreaks as recorded in observational data.7

The periodic cycles seen in this system are produced via

a Neimark–Sacker bifurcation with respect to all parameters

except qy with respect to which there is a reverse

Neimark–Sacker bifurcation wherein a limit cycle loses its

stability and becomes a stable fixed point after becoming a

stable spiral. Thus changes in parameter values due to pertur-

bations can move the system to a regime which does not sup-

port the Neimark–Sacker bifurcation, the absence of periodic

behaviour implying that there are no population cycles in the

region being studied.

Observations made for over 50 years and the recon-

structed data from tree rings studies1 show a dominant 8 to 9

year periodicity in the budmoth outbreaks in the Engadine

region of the Swiss Alps which our model reproduces. Our

model with one parasitoid shows periodic variation of all the

three interacting species, which are mutually synchronized

with a small constant phase lag, in accordance with observa-

tions. The bifurcation videos for the 3-species system, some

of which we have made available in the supplementary mul-

timedia files, show remarkable dynamics the system can gen-

erate. Some of the notable features are the creation and

annihilation of fixed points at certain value of parameters,

creation of chaotic regions via bubble formation, expansion

or contraction of the attractor size via interior crises, and cre-

ation of satellites due to interior crises. The presence of bub-

bles, including chaotic bubbles indicates that the hydra

effect, involving an increase in the population size of a spe-

cies in response to an increased mortality rate—an important

feature in population dynamics is prevalent in our model.

This in turn indicates that several routes exist in our complex

tritrophic system by which extinction of any of the species

may be avoided.

Our model is also more robust than earlier models in the

literature. Further our model can not only explain the

observed collapse of the budmoth cyclic outbreaks in the

Swiss Alps after 1981 but also account for the historical

absence of cycles in the nearby Tatra mountains in the

Carpathians.7 Our system with four or more species produces

cycles too. However the introduction of one or more parasit-

oid species to the 3-dimensional system causes the time peri-

ods of budmoth outbreak cycles to become longer. The

simultaneous presence of more than one parasitoid in our

FIG. 17. Detail of the simultaneously

existing 7 stable limit cycles of Fig.

16(b) seen from a different perspective.

(m ¼ 13; a ¼ 0:5; h ¼ 0:5; s ¼ 0:5; qy

¼ 1:13; qz¼ 1.99). (a) Screenshot of

the 3-d phase portrait of the system.

(Multimedia view). (b) 2-dimensional

bifurcation diagram for the variables x
(LBM) and z (PQI) with respect to c
(colour scale) showing the 7 (narrow)

limit cycles of different sizes, having

the appearance of dancing tulips.

(Multimedia view) [URL: http://

dx.doi.org/10.1063/1.4962633.5] [URL:

http://dx.doi.org/10.1063/1.4962633.6]

FIG. 18. Time period of cyclic outbreaks for the 3-d system (one parasitoid

species) and its response with change in one parameter keeping other param-

eter values fixed at a ¼ 0:5; h ¼ 0:5; s ¼ 0:5; k ¼ 8; qy ¼ 1:13; m ¼ 13;
c ¼ 12; qz¼ 1.34.
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model mimics a realistic situation because in nature the bud-

moth may be parasitized by 94 species of parasitoids.24

Indeed, observations have recorded the presence of as many

as 5.4 species of parasitoids on the average on a single bud-

moth in the Swiss Alps in a year.25 Such a possibility of the

presence of more than one parasitoid species in the budmoth

system has, to our knowledge, never been studied before in a

mathematical model in the literature.
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APPENDIX: LINEAR STABILITY ANALYSIS AND
CONCLUSIONS FROM THE ROUTH ARRAY

The Jacobian of the system evaluated at the fixed points

ðx�; y�; v�; z�Þ is given by the matrix:

A B C D
E F G H
I J K L
M N O P

0
BB@

1
CCA

whose entries are given by

A ¼ kqzz
�

1þ l�z z�
1� x�ð Þexp �x� �

qyy�

1þ lyy�
� qvv

�

1þ lvv�

 !

B ¼ � kqzz
�x�

1þ lzz
�

qy

1þ lyy�
� 	2

� exp �x� �
qyy�

1þ lyy�
� qvv

�

1þ lvv�

 !
; (A1)

C¼� kqzz
�x�

1þlzz
�

qv

1þlvv�ð Þ2
�exp �x� �

qyy�

1þlyy�
� qvv

�

1þlvv�

 !

D¼ kx�
qz

1þlzz
�ð Þ2

exp �x� �
qyy�

1þlyy�
� qvv

�

1þlvv�

 !

E¼ c 1�exp �
qyy�

1þlyy�

 ! !

F¼ cx�
qy

1þlyy�
� 	2

exp �
qyy�

1þlyy�

 !

G¼ 0; H¼ 0

I ¼ jc 1� exp � qvv
�

1þ lvv�

� �� �
; J ¼ 0

K ¼ jcx�
qv

1þ lvv�ð Þ2
exp � qvv

�

1þ lvv�

� �
; L ¼ 0

M ¼ � 1� að Þm
mþ x�ð Þ2

þ as
qzz
�

1þ lzz
�

 !

N ¼ 0; O ¼ 0; P ¼ a h� sx�ð Þqz

1þ lzz
�ð Þ2

: (A2)

Its characteristic equation is given by

c1K
4 þ c2K

3 þ c3K
2 þ c4Kþ c5 ¼ 0;

where

c1 ¼ 1; c2 ¼ �ðAþ Fþ K þ PÞ

c3 ¼ AF� BEþ AK � CI þ AP� DM þ FK þ FPþ KP

c4 ¼ BEK � AFK þ CFI � AFPþ BEP

þDFM � AKPþ CIPþ DKM � FKP

c5 ¼ AFKP� BEKP� CFIP� DFKM:

The Routh array constructed from the Jacobian matrix is:

c1 c3 c5

c2 c4 0
c2c3 � c1c4

c2

c5 0

�ðc5c2
2 � c3c2c4 þ c1c2

4Þ
ðc2c3 � c1c4Þ

0 0

c5 0 0

0
BBBBBBBB@

1
CCCCCCCCA

Since the system poses difficulty in solving analytically,

we resort to numerical methods to find its stability. Some of

these numerical results are shown in Table IV.

The condition c4ðc2c3 � c4Þ � c5c2
2 ¼ 0 ensures forma-

tion of a limit cycle43,44 and appearance of a pair of imagi-

nary eigenvalues. The frequency x of this limit cycle is

given by x2 ¼ c4

c2
.

For k¼ 1, limit cycles do not form; the Routh–Hurwitz

(RH) coefficients are all positive indicating that it is a stable

fixed point. As we vary k to 8, the fixed point loses its stabil-

ity, becoming an unstable spiral with a limit cycle being

born around it. For k¼ 8 one of the RH coefficients is nega-

tive which indicates the fixed point losing its stability.

Similarly, we see that when one of the parasitoids does not

exist (3-d system), RH coefficients of different signs arise

for large values of k.
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